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Abstract

Self-supervised or weakly supervised models
trained on large-scale datasets have shown sample-
efficient transfer to diverse datasets in few-shot
settings. We consider how upstream pretrained
models can be leveraged for downstream few-
shot, multilabel, and continual learning tasks. Our
model CLIPPER (CLIP PERsonalized) uses im-
age representations from CLIP, a large-scale im-
age representation learning model trained using
weak natural language supervision. We devel-
oped a technique, called Multi-label Weight Im-
printing (MWI), for multi-label, continual, and
few-shot learning, and CLIPPER uses MWI with
image representations from CLIP. We evaluated
CLIPPER on 10 single-label and 5 multi-label
datasets. Our model shows robust and competi-
tive performance, and we set new benchmarks for
few-shot, multi-label, and continual learning. Our
lightweight technique is also compute-efficient
and enables privacy-preserving applications as
the data is not sent to the upstream model for
fine-tuning. Thus, we enable few-shot, multilabel,
and continual learning in compute-efficient and
privacy-preserving settings.

1. Introduction
Data-efficiency and generalization are key challenges in
deep learning, and representation learning has been at the
heart of deep learning (Bengio, 2012). Recently, self-
supervised or weakly supervised models have been lever-
aged to learn from large-scale uncurated datasets and have
shown sample-efficient transfer (Chen et al., 2020b; Rad-
ford et al., 2021; Henaff, 2020; He et al., 2020; Devlin
et al., 2019; Radford et al., 2019). However, commonly
used transfer techniques, e.g., fine-tuning or distillation, do
not currently support few-shot, multilabel, and continual
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learning.

Few-shot learning (FSL) has made great strides in the area
of sample-efficient learning (Wang et al., 2020). How-
ever, FSL models are pretrained on large, domain-specific,
and expensive-to-label datasets and have not leveraged
pretrained models to avoid training on large and domain-
specific labeled datasets. Also, FSL methods do not outper-
form pretrained models when domain shift is present (Chen
et al., 2019; Kornblith et al., 2019).

We consider the problem of enabling few-shot, multilabel,
and continual learning for real-world downstream tasks,
and investigate combining representation learning from pre-
trained self-supervised or weakly supervised models with
few-shot, multilabel, and continual learning techniques.

Our model CLIPPER (CLIP PERsonalized) uses image
representations from CLIP, a weakly-supervised image rep-
resentation learning model, for FSL. Inspired by Weight
Imprinting (Qi et al., 2018), an FSL method, we develop
an approach called Multilabel Weight Imprinting (MWI)
for few-shot, multilabel, and continual learning. CLIPPER
combines image representations from CLIP with MWI for
continual and multilabel few-shot learning.

We evaluated CLIPPER on 10 single-label and 5 multi-
label datasets. CLIPPER shows robust and competitive
performance with state-of-the-art methods, e.g., FSL for
MiniImagenet. We set benchmarks for few-shot, continual,
and multilabel learning on several different datasets.

We make 3 key contributions.
1. A new methodology combining the flexibility of few-shot
learning methods with the sample-efficiency and generaliz-
ability of transfer learning methods using self-supervised
or weakly supervised pretrained models. Our method elimi-
nates the need for data- and compute-intensive pretraining
on large, domain-specific, and labeled datasets for FSL.
2. A FSL technique, leveraging pretrained representations
for few-shot, continual, and multilabel learning.
3. Evaluations and benchmarks for few-shot, continual,
and multilabel learning on 15 multilabel and single-label
datasets, showing robust and competitive performance.
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2. Related Work
2.1. Few-shot Learning (FSL)

There are 3 types of approaches for FSL: model-, metric-,
and optimization-based. Unlike previous work, we use a
pretrained models for data- and compute-efficient training.

Our Multilabel Weight Imprinting technique lies in the cate-
gory of metric-based approaches (Koch et al., 2015; Snell
et al., 2017; Sung et al., 2017; Vinyals et al., 2017). More
specifically, we use a prototype-based metric-learning ap-
proach, as they assign trainable proxies to each category
and enable faster convergence via element-category com-
parison, instead of element-wise comparisons. Our work
extends a previous FSL technique, called weight imprinting
(Qi et al., 2018). We not only use a pretrained base model
(Qi et al., 2018), instead of training a base network from
scratch, but also extend weight imprinting to enable multi-
label and continual learning. Other metric-based methods
are complementary to our approach and our model can be
extended, e.g., with MatchingNet attention (Vinyals et al.,
2017) or RelationNet relations (Sung et al., 2017).

Model-based methods (Santoro et al., 2016; Munkhdalai
& Yu, 2017) use especially designed models for rapid pa-
rameter updates, and optimization-based techniques (Ravi
& Larochelle, 2016; Finn et al., 2017; Nichol et al., 2018)
adjust the optimization method to meta-learn efficiently.
Recent research indicates that learning a good embed-
ding model can be more effective than sophisticated meta-
learning algorithms (Tian et al., 2020) and efficient meta-
learning may be predominantly due to the reuse of high-
quality features (Raghu et al., 2019). Nonetheless, these
techniques, though relatively training-intensive, are com-
plementary to our work and may be used to improve both
upstream and downstream models.

2.2. Self-supervised Representation Learning

Self-supervised and weakly supervised models have been
used in natural language processing (Dai & Le, 2015; Rad-
ford et al., 2018; Devlin et al., 2019) and computer vision
(Henaff, 2020; He et al., 2020; Chen et al., 2020a;b; Radford
et al., 2021) to learn from large-scale unlabeled or weakly
labeled datasets. Though pre-training is still imperfect (Er-
icsson et al., 2020; Mahajan et al., 2018), pretrained mod-
els trained on large-scale datasets have shown robust and
sample-efficient transfer to diverse tasks (He et al., 2020;
Henaff, 2020; Chen et al., 2020b; Radford et al., 2021).

Transfer learning is related to few-shot learning, but FSL
does not use a pretrained method. Instead, FSL is trained
and evaluated using the same distribution and does not nec-
essarily outperform transfer learning when domain shift is
present (Chen et al., 2019). Transfer learning, however,
could benefit from the specialized FSL techniques (Korn-

blith et al., 2019). Also, to the best of our knowledge, unlike
our work, transfer learning using pretrained models has not
been combined with multi-label and continual learning.

Like previous work, we use self-supervised data augmenta-
tion to boost FSL (Gidaris et al., 2019; Qi et al., 2018).

2.3. Multilabel and Continual Learning

Continual learning techniques (Mai et al., 2021) include
regularization-based methods (e.g., Elastic Weight Consoli-
dation), memory-based methods (e.g., Incremental Classi-
fier and Representation Learning (Rebuffi et al., 2017)), and
parameter isolation (like Continual Neural Dirichlet Process
Mixture). Previously used continual techniques, however,
did not use pretrained models for few-shot, multilabel, and
continual learning.

Common multilabel classification techniques include ML-
kNN, Multi-label DecisionTree, etc (Devkar & Shiravale,
2017). Multi-Label Image Classification has also been done
using knowledge distillation from weakly supervised de-
tection (Liu et al., 2018). However, none of the existing
methods combine multilabel, continual, and few-shot learn-
ing, especially using pre-trained models. Several multilabel
and continual learning techniques, nonetheless, are comple-
mentary to our work and can be extensions of our work.

3. Approach
3.1. Desiderata

We outline 3 desiderata for real-world computer vision ap-
plications. First, few-shot learning so that the applications
can start well in data-scarce scenarios and can also be cus-
tomized and personalized for different needs. Second, con-
tinual learning to incrementally learn new information and
avoid catastrophic forgetting, e.g., replacing of older classes
when new ones are added. Third, multilabel learning as
the right label may not be just one label but a subset of all
the given labels, including 0 to all labels. The multi-label
case is important for not only assigning multiple labels to
a particular data point but also for assigning zero labels, in
case we get data points that we currently do not have labels
for, i.e., the continual learning case. Continual learning
often considers the addition of data points along with their
respective labels. However, we consider the more realistic
continual case when a point may be added even before their
label is added and thus, the model needs to assign no label.

3.2. Decisions

We made the following three design choices to enable few-
shot, multilabel, and continual learning.

Pretrained base model: FSL models are typically pre-



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Personalizing Pretrained Models

trained on large domain-specific training sets, which contain
examples not in the support/test set. The models are then
trained and tested on support and test sets, which have the
same classes. Large-scale, domain-specific, and labeled
datasets, however, may not always be available in real-world
settings. Also, FSL models trained on domain-specific sets
may not generalize well to domain shifts (Hu et al., 2021).
Large-scale self-supervised or weakly supervised models,
on the other hand, learn good representations and can be
fine-tuned for data-efficient and diverse downstream tasks
(Chen et al., 2020b; Radford et al., 2021). We use pretrained
models trained on diverse datasets as base models for FSL,
instead of training base models from scratch on domain-
specific datasets. As a result, unlike FSL methods, we only
train with a support test, which we call train set.

Weight Imprinting (WI): Weight imprinting (Qi et al.,
2018) is a FSL learning method that learns a linear layer
on top of the embeddings, where the columns of the lin-
ear layer weight matrix are prototype embeddings for each
class. Many self-supervised or weakly supervised models
have been shown to learn linearly-separable embeddings
using linear probes (Radford et al., 2021) and a linear layer
can be added to pretrained embeddings to classify different
classes. Compared to traditional transfer learning techniques
with a fixed number of classes, WI adds new classes as new
columns of the linear layer weight matrix, making adding
classes computationally and conceptually simpler and avoid-
ing catastrophic forgetting. Thus, weight imprinting sup-
ports prototype-based few-shot and continual learning.

Sigmoids, not Softmax: The original weight imprinting
model uses softmax and thus is compatible with single-
label classification. We replace the softmax with sigmoid
activations for each class in weight imprinting to enable
multi-label learning. Sigmoids also support an output of 0
labels for continual learning, i.e., when the label for a given
data point has not yet been added to the label set.

3.3. Details

We created a multilabel version of weight imprinting (Qi
et al., 2018), called Multilabel Weight Imprinting (MWI).
Our model has two parts. First, an embeddings extractor, φ :
RN → RD, maps input image x ∈ RN to a D-dimensional
embedding vector φ(x), followed by an L2 norm. Second,
a sigmoid function, f(φ(x)), maps the embedding using
sigmoid activations for each category.

fi(φ(x)) =
1

1− exp(−wT
i φ(x))

where wi is the i-th column of the weight matrix normalized
to unit length (with no bias term).

Each column of the WI matrix is a template of the corre-
sponding category. The linear layer computes the inner prod-

uct between the input embeddings φ(x) and each template
embedding wi. The result represents ‘close-by’ templates
in the embedding space using a threshold function.

ŷ = sgn(wTφ(x)− ϑ)

where sgn is the sign function and ϑ is the threshold.

4. Implementation
We share our implementation details below and model ar-
chitecture in Fig 1, and algorithm in Appendix.

Embeddings Generator: Weight imprinting (Qi et al.,
2018) uses a base classifier trained on “abundant” labeled
training samples. We replace the base classifier with CLIP
(ViT B/32), a pretrained weakly supervised model (Radford
et al., 2021). We do not re-train or fine-tune the weights
of the pretrained CLIP model. As shown in section 6 (Fig-
ure 2), we compared embeddings from different supervised,
self-supervised, and weakly supervised models, and chose
CLIP because it had the best FSL performance using WI.

Image Embeddings: We embed images using CLIP’s vi-
sion transformer and then use the normalized embeddings
for multilabel weight imprinting. Compared to weight im-
printing (Qi et al., 2018), which used 64-dimensional em-
beddings, we use 512-dimensional embeddings from CLIP.
Qi et al. (Qi et al., 2018) also tried 512-dimensional embed-
dings and reported no significant effects on the results.

Multilabel Weight Imprinting (MWI): The MWI layer is
a single dense layer with an input size equal to the embed-
ding size of the embeddings generator and output equal to
the number of classes. We initialize the MWI weights as
an average of the embeddings for each class corresponding
to the weight column. We normalize the weights columns
and use sigmoid activations with a threshold. When training
the MWI layer, we use the binary cross-entropy loss with
an Adam optimizer (Kingma & Ba, 2014).

MWI+ = MWI + Training (T) + Augmentations (A):
When training with non-trivial (nt) augmentations, we use
3 types of augmentations (Chen et al., 2020a): i. random
crop, resize, and random horizontal flip; ii. random color
jitter; iii. random Gaussian blur. Trivial (t) augmentations
refer to repeating the image.

Continual Learning (CL) We use Experience Replay (ER)
(Lin, 1992), which involves keeping a memory of old data
and rehearsing it. ER has been used for CL (Rolnick et al.,
2018; Chaudhry et al., 2019; Hayes et al., 2019) and has
been shown to outperform many CL approaches with and
without a memory buffer (Chaudhry et al., 2019). In our
multilabel continual learning setting, we retrain the old data
with having/not having the new label when new labels are
received.
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Figure 1. CLIPPER uses pre-trained embeddings with Multilabel Weight Imprinting for few-shot, multilabel, and continual learning.

Table 1. Our datasets and their abbreviations
Dataset Name Abbr.

Single
Omniglot (Few-shot) OM
MiniImagenet (Few-shot) MI
Labeled Faces in the Wild LFW
UCF101 (Action videos) UCF
Imagenet-R (Art) IR
Imagenet-Sketch IS
Indoor Scene Recognition ISR
CIFAR10 C10
Imagenet-A (Adversarial) IA
Colorectal Histology (Medical) CH
Multi-label
CelebA Attributes CAA
UTK Faces UTK
Yale Faces YF
Common Objects in Context COCO
iMaterialist Fashion (Fine-grained) IM

5. Experiment Study
5.1. Datasets

We selected 10 single-label and 5 multi-label datasets based
on 5 reasons: i. Few-shot learning: We added commonly
used datasets for FSL; ii. Diversity: We included diverse
datasets to evaluate performance under distributional and
task shifts; iii. Robustness: We also picked an adversar-
ial example dataset to evaluate robustness; iv. Multilabel
settings: We chose multilabel datasets, including object de-
tection, fine-grained detection, and overlapping labels; v. AI
for good: We included a medical dataset to illustrate the
broader impact of our work. Our dataset list is in Table 1.

5.2. Evaluations

We compared FSL in 7 settings: i. using different embed-
dings generators; ii. using sigmoid (MWI) versus softmax
(WI) activations; iii. with and without training (T) and

augmentations (A), both trivial (t) and non-trivial (nt) aug-
mentations; iv. in 4 FSL settings like (Sung et al., 2017)):
(5-way 5-shot, 15 test; 20-way 5-shot, 5 test; 5 way 1 shot,
19 test; 20-way 1-shot, 10 test); v. in continual learning
settings; vi. with CLIP’s zero-shot and FSL linear probe; vii.
with state-of-the-art (SOTA) results – there are no previous
few-shot, multi-label, and continual learning evaluations,
but we compare with FSL and also full training/test set eval-
uations. All evaluations are 5-way 5-shot, except for Ch
(results in Appendix). We randomly sample classes and data
points from each dataset 100 times and average the results.

5.3. Metrics

Commonly used single-label classification metrics, e.g., top-
1 accuracy, are not applicable in multilabel settings. Mul-
tilabel evaluations have used different metrics, including
class and overall precision, recall, and F1, as well as mean
average precision (mAP) (Wang et al., 2016). We calculated
a total of 13 diverse metrics for each of our evaluations and
included all the results in the supplementary materials.

We primarily use overall F1-score in this paper since F1-
score accounts for class imbalance, which may be present
in multilabel datasets, especially in real-world settings. The
only downside of F1-score is that compared to mAP, it is
threshold-dependent. However, in real-life situations, the
threshold is also important, and therefore, we also discuss
the optimal cut-off thresholds for our evaluations.

To compare our results with state-of-the-art (SOTA) results,
we also report the metrics used by different SOTA results,
i.e., top-1 accuracy for single-label datasets and average
class accuracy (cAc) for multi-label datasets, except COCO,
which uses mAP. We report these metrics along with F1-
scores so that the F1-scores can be compared to the different
SOTA metrics. SOTA references are in Table ??.

6. Results
We share our main results in this section and ablations in
the next. First, CLIP+WI performance is similar to CLIP’s
linear probe performance, possibly because both are linear
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layers (Fig 2). Second, without training and augmentations,
MWI performs worse than WI for single-label classifica-
tions – MWI F1-score is worse than WI F1-score (Fig 2),
even though the accuracies are comparable (Fig 3). Third,
MWI with training (50-80 epochs) and augmentations (10
trivial/non-trivial), i.e., MWI+, does at least as well as WI
using CLIP (Fig 2-3), CLIP’s linear probes (Fig -2), and
state-of-the-art baselines (Fig 3). MWI and MWI+ are also
compared with SOTA and CLIP’s baselines in Table 2.

Comparing CLIP’s embeddings: We compared embed-
dings from different pretrained supervised (Resnet50 (He
et al., 2016), VGG16 (Simonyan & Zisserman, 2014), Incep-
tion V3), self-supervised (SimCLR v2 (Chen et al., 2020b),
MoCo v2 Resnet50 (Chen et al., 2020a;c), PCL Resnet50
(Tang et al., 2018), SwAV Resnet50 (Caron et al., 2020)),
and weakly supervised (CLIP (Radford et al., 2021)) mod-
els (Figure 2 left). CLIP is trained on 400 million images,
while the others are on 14 million Imagenet images. We
have three key findings. First, CLIP gives the best results,
possibly because CLIP is trained on a bigger dataset than
other pretrained models. Second, SimCLR’s performance is
closest to CLIP, even though it was trained only on a smaller
dataset than CLIP. Third, Resnet50-based models performed
much worse than the other models, even though all models,
except CLIP, were trained on Imagenet.

SOTA caveats: There are 3 caveats to our SOTA compar-
isons (Table 2). First, to the best of our knowledge, there is
no prior work on multilabel few-shot learning and hence, we
are setting new benchmarks and have no direct prior work
to compare with. Second, even though we list the SOTA
5-way 5-shot results for OM and MI, there are two main
differences: i. Previous few-shot results were pre-trained on
large-scale, domain-specific, and labeled datasets, whereas
our model is trained only on the few-shot set. Thus, per-
formance for new domains like OM may not be as good as
few-shot models pre-trained on OM; ii. Also, previous few-
shot works did not do multilabel few-shot learning. Third,
we list SOTA for other datasets, which have previously not
been evaluated for few-shot learning, so the SOTA results
are for full datasets and we only list them as a reference. 1

CLIP baselines: Since we use embeddings from CLIP, we
also compare our CLIP + MWI results to CLIP’s linear
probe, zero-shot, and CLIP + WI performance. We use both
F1-score and accuracy, and all comparisons, other than zero-
shot, are 5-way 5-shot. MWI+ using CLIP is comparable to
CLIP’s baselines, but unlike the linear probe, also enables
few-shot, multilabel, and continual learning.

1Both 1. Ia and Ir & 2 in Table 2 use CLIP but 2 uses the
ViT B/32 architecture whereas 1. Ia and Ir use the ViT L/14-
336px architecture. L/14-336px is a bigger and better performing
architecture but is not public (Radford et al., 2021)

7. Ablations
7.1. MWI: Without Training and Augmentations

We compare CLIPPER’s 5-way 5-shot performance on
9 single-label datasets (Figure 4 left) and 5 multilabel
datasets (Figure 4 right). For single-label, we perform two
evaluations: i. Weight imprinting with softmax activations
(f1-score and accuracy); ii. Multilabel weight imprinting
with sigmoids (f1-score, top-1 accuracy, and per-class ac-
curacy). For multilabel datasets with bounding boxes, i.e.,
COCO and iMaterialist, we compared full-full and patch-
patch configurations, where ‘full’ represents the full image
and ‘patch’ represents the bounding box of the relevant ob-
ject. In n-m, n represents the training configuration and m
represents the testing configuration.

We had three key findings (Fig 4). First, for single-label
datasets, WI accuracy is comparable to MWI top-1 accu-
racy, which means that the sigmoid activation can get us
comparable results to the softmax activation. Though, as ex-
pected, MWI F1-scores are much lower in value than MWI
Top-1 accuracy. Second, multi-label datasets on average
have much lower performance than single-label datasets,
which is expected as they have more labels than single-label
datasets. Third, the patch-patch configuration works best for
iMaterialist whereas the full-full configuration works best
for COCO, possibly because the background is meaningful
in COCO but mostly white in iMaterialist.

7.2. MWI+: With Training and Augmentations

We evaluated the performance of Multilabel Weight Imprint-
ing by adding training (T) and augmentations (A) (Figure
5). We had three key findings. First, CLIPPER’s perfor-
mance improved with both training and augmentations –
after training and augmentations, F1-scores for multi-label
weight imprinting were comparable to the F1-scores for
weight imprinting with softmax. Second, the performance
saturates around 50-80 epochs, and trivial (t) augmentations,
i.e., image repetitions, are as good or sometimes even better
than non-trivial (nt) augmentations. Third, with training, the
best threshold values stabilized around 0.5 for most datasets
(Figure 8 (left). We also compared 4 few-shot learning set-
tings (Figure 6): 5-way 5-shot, 20-way 5-shot, 5 way 1 shot,
20-way 1-shot. The performance worsens with decreasing
shots and with increasing classes.

7.3. Continual learning

We evaluated 5 way 5 shot continual learning. We incre-
mentally added the number of labeled classes and their
respective training data and labels, while keeping the test
set fixed. We had three key findings. First, CL performance
(Figure 7) varies with the number of classes but reaches
approximately the same 5-way 5-shot value with continual
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Table 2. Comparing CLIPPER Multilabel Weight Imprinting (MWI) with SOTA and CLIP baselines1

C10 Ia Ir Is Isr Lfw Mi Om Ucf Ca Co Im Ut Yf Ch
1 .91 .85 .89 .60 .74 1.0 .92 1.0 .99 .82 .84 .72 .86 .85 .93
2 .91 .75 .82 .91 .95 1.0 .95 .96 .95
3 .89 .75 .79 .89 .94 1.0 .94 .94 .94 .69 .88 .79 .74 .88
4 .70 .54 .60 .72 .83 .94 .78 .66 .83 .62 .75 .48 .60 .66
5 .90 .74 .80 .90 .94 1.0 .94 .95 .94 .69 .73 .56 .78 .79 .69
6 .96 .90 .92 .96 .98 .99 .98 .98 .98 .76 .89 .83 .86 .91 .92
7 .91 .77 .83 .92 .96 1.0 .95 .97 .95 – .87 – – –
SOTA(1); CLIP Lin. Probe Ac(2); MWI Ac(3),F1(4); MWI+T+A F1(5),CAc(6),Top1/mAP(7)

Figure 2. Comparing embeddings models (left) and Multilabel Weight Imprinting results (right).

Figure 3. Comparing SOTA, WI, and MWI for single-label (left) and multi-label (right) datasets.

Figure 4. Comparing metrics, without training and augmentations, for single- and multi-label datasets.
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Figure 5. Comparing MWI with training and augmentations for single- and multi-label datasets
.

Figure 6. Comparing different few-shot settings with MWI+ (L:single-label, R:multi-label datasets)

Figure 7. MWI+ Continual learning results for increasing classes (L:single-, R:multi-label dataset)

Figure 8. Optimal thresholds with (left) and without (right) continual learning for all datasets.
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learning as it does without continual learning (5). Second,
the optimal-performance thresholds vary with the number of
classes and we share the best accuracies and their respective
thresholds for each dataset for different number of classes
(Figure 8 right). Third, the thresholds are higher with lower
number of classes, possibly because of lesser training data,
but converge to approximately the same 5-way 5-shot value
with and without continual learning (Fig 8).

8. Discussion and Limitations
With advances in representation learning, the question arises:
how to best use the representations in downstream tasks.
Previous work suggests, “combining the strength of zero-
shot transfer with the flexibility of few-shot learning is a
promising direction” (Radford et al., 2021) and “obtain bet-
ter results...by combining few-shot learning methods with
fine-tuning” (Kornblith et al., 2019).

We outline few-shot, continual, and multilabel learning as
the desiderata for downstream tasks and introduce a tech-
nique, called Multilabel Weight Imprinting, to meet the
desiderata. Our model uses embeddings from a pertained
CLIP model and shows promising performance on diverse
and challenging tasks. We set few-shot, multilabel, and
continual learning benchmarks for many datasets.

Our work has 3 key findings. First, using pretrained models
with an existing FSL technique, i.e., weight imprinting (Qi
et al., 2018), enables sample-efficient learning with 2 addi-
tional benefits: i. Unlike commonly-used transfer learning
techniques like fine-tuning and distillation, we have a proto-
type for each class and can flexibly add/update each class
prototype without influencing (e.g., forgetting) the other
class prototypes; ii. Unlike commonly-used FSL methods,
the base model need not be trained with computationally-
intensive techniques involving large, domain-specific, and
expensive-to-label datasets. Second, replacing weight im-
printing’s softmax function with a sigmoid and threshold
function enables multilabel weight imprinting, and using
training and augmentations helps improve performance.
Third, adding experience reply enables continual learning.

Our work has 3 key limitations: i. Multilabel learning has
poorer and threshold-dependent performance compared to
single-label learning, but multi-label learning is still more
realistic than single-label classification as even single-label
datasets have multiple labels (Yun et al., 2021); ii. Prototype-
based few-shot learning scales the number of prototypes
with the number of classes and comparing with every single
prototype may not be efficient. Thus, efficient and scalable
methods, e.g., hierarchical prototypes, are needed; iii. Expe-
rience replay for multilabel continual learning is memory-
inefficient and memory-efficient continual learning, e.g.,
prototype-based contrastive learning, could be leveraged.

We have 3 key future directions: i. Use downstream few-
shot learning for error correcting labels from upstream mod-
els; ii. Make few-shot, multilabel, and continual learning
memory-efficient, robust, and deployable; iii. Deploy and
test in real-world settings, e.g., human-in-the-loop personal-
ized applications.

9. Broader Impact
We highlight 3 key areas of positive impact. First, we de-
signed our model for few-shot, multilabel, and continual
learning to enable real-world sample-efficient applications,
including personalized and AI for good applications (more
details in appendix). Second, since we do not train the
upstream model, the data does not have to be sent to the
upstream model, affording privacy-preserving and offline
model training. Third, since we only train a linear layer, our
model affords easy and lightweight real-world training and
deployment, including on mobile and wearable devices, es-
pecially if the pretrained base model are mobile-optimized
(Howard et al., 2017) as in (Khan & Maes, 2021). We have
made our model flexible, easy-to-use, and easy-to-train –
it can be used with any state-of-the-art pre-trained model,
trained and run using free Google Colab notebooks, and
personalized using only a few examples. Few-shot and per-
sonalized learning may also help mitigate data/labeling bias.
Our work will hopefully enable stakeholders to ethically
design and deploy personalized, privacy-preserving, and
meaningful real-world deep learning applications.

10. Conclusion
Data-efficiency and generalization are key challenges for
deep learning. Self-supervised or weakly supervised mod-
els trained on unlabeled or uncurated datasets have shown
promising transfer to few-shot tasks. Few-shot learning
methods have also demonstrated sample-efficient learning.

We highlight the need for few-shot, multilabel, and contin-
ual learning, and developed Multi-label Weight Imprinting
(MWI) for few-shot, continual, and multi-label learning.
Unlike previous FSL techniques, our model, CLIPPER,
uses MWI with pretrained representations from a weakly-
supervised model, i.e., CLIP. Thus, CLIPPER combines the
sample-efficiency and generalizability of transfer learning
with the flexibility and specialization of FSL methods.

CLIPPER shows robust and competitive performance and is
a step in the direction of using pretrained models for few-
shot, multilabel, and continual learning. Our model is also
lightweight and the data does not have to be sent back to the
upstream model, enabling privacy-preserving and on-device
downstream training. Thus, our model enables few-shot,
multilabel, and continual learning, especially for easy-to-
train, light-weight, and privacy-preserving applications.
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